Regulation of Hormone-Induced Histone Hyperacetylation and Gene Activation via Acetylation of an Acetylase
نویسندگان
چکیده
Nuclear receptors have been postulated to regulate gene expression via their association with histone acetylase (HAT) or deacetylase complexes. We report that hormone induces dramatic hyperacetylation at endogenous target genes through the HAT activity of p300/CBP. Unexpectedly, this hyperacetylation is transient and coincides with attenuation of hormone-induced gene activation. In exploring the underlying mechanism, we found that the acetylase ACTR can be acetylated by p300/CBP. The acetylation neutralizes the positive charges of two lysine residues adjacent to the core LXXLL motif and disrupts the association of HAT coactivator complexes with promoter-bound estrogen receptors. These results provide strong in vivo evidence that histone acetylation plays a key role in hormone-induced gene activation and define cofactor acetylation as a novel regulatory mechanism in hormonal signaling.
منابع مشابه
Targeted chromatin binding and histone acetylation in vivo by thyroid hormone receptor during amphibian development.
Amphibian metamorphosis is marked by dramatic, thyroid hormone (TH)-induced changes involving gene regulation by TH receptor (TR). It has been postulated that TR-mediated gene regulation involves chromatin remodeling. In the absence of ligand, TR can repress gene expression by recruiting a histone deacetylase complex, whereas liganded TR recruits a histone acetylase complex for gene activation....
متن کاملPromoter regulation by distinct mechanisms of functional interplay between lysine acetylase Rtt109 and histone chaperone Asf1.
The promoter activity of yeast genes can depend on lysine 56 (K56) acetylation of histone H3. This modification of H3 is performed by lysine acetylase Rtt109 acting in concert with histone chaperone Asf1. We have examined the contributions of Rtt109, Asf1, and H3 K56 acetylation to nutrient regulation of a well-studied metabolic gene, ARG1. As expected, Rtt109, Asf1, and H3 K56 acetylation are ...
متن کاملShape-Induced Terminal Differentiation of Human Epidermal Stem Cells Requires p38 and Is Regulated by Histone Acetylation
Engineered model substrates are powerful tools for examining interactions between stem cells and their microenvironment. Using this approach, we have previously shown that restricted cell adhesion promotes terminal differentiation of human epidermal stem cells via activation of serum response factor (SRF) and transcription of AP-1 genes. Here we investigate the roles of p38 MAPK and histone ace...
متن کاملHistone acetylation and recruitment of serum responsive factor and CREB-binding protein onto SM22 promoter during SM22 gene expression.
Chromatin acetylation and deacetylation catalyzed by histone acetyltransferases (HATs) and histone deacetylases (HDACs) are closely related to eukaryotic gene transcription. Although the binding of serum response factor (SRF) to the CArG boxes in the promoter region is necessary for SM22 expression, it has never been examined whether the local chromatin modification is involved in SM22 gene reg...
متن کاملHBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin.
HBO1, an H4-specific histone acetylase, is a coactivator of the DNA replication licensing factor Cdt1. HBO1 acetylase activity is required for licensing, because a histone acetylase (HAT)-defective mutant of HBO1 bound at origins is unable to load the MCM complex. H4 acetylation at origins is cell-cycle regulated, with maximal activity at the G1/S transition, and coexpression of HBO1 and Jade-1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 98 شماره
صفحات -
تاریخ انتشار 1999